Login

Mathematics of Planet Earth

  • Home
  • About MPE
  • Programs
    • Long Term Programs
    • Summer Schools
    • Workshops
    • Meetings
    • Special Sessions
    • Colloquia and Seminars
    • Public Lectures
    • Simons Lectures
  • Education
    • Public Lectures
    • Speakers Bureau
    • Summer Schools
    • Resources
    • Posters
    • Curriculum Materials
    • Academic programs
  • Events
    • MPE Day at UNESCO
    • Public Lectures
    • Exhibitions
    • Competitions
    • Awareness events
  • Partners
    • MPE2013 Partner Reports
    • Societies
    • International Bodies
    • Institutes
    • Research Centers
    • Scientific Journals
    • Teacher Associations
    • Academic
    • Magazines
    • Science Centers
    • Others
    • Becoming a Partner
  • Learn More
    • Books
    • Articles
    • Educational Resources
    • Videos and Podcasts
    • Speakers Bureau
  • Newsroom
  • Blog
  • Calendar
  • Opportunities
  • Français

Search

Latest Posts

AIM/MCRN Summer School: Week 6

August 2, 2020

 [...]

AIM/MCRN Summer School: Week 5

July 26, 2020

 [...]

Professor Christopher K.R.T. Jones — Recipient of the 2020 MPE Prize


Professor Chris Jones is the Bill Guthridge Distinguished Professor in Mathematics at the University of North Carolina at Chapel Hill and Director of the Mathematics and Climate Research Network (MCRN). The 2020 MPE Prize recognizes Professor Jones for his many significant contributions to climate science and the mathematics of planet Earth.

Categories

Colloquium or Seminar

Computer simulations of meteorite impact processes: A multi-material, multi-rheology CFD-approach for compressible flows

Geophysics / Mathematics / Natural Disasters / Paleoclimate

Speaker: Dr. K. Wünnemann / D. Elbeshausen (Museum für Naturkunde - Leibniz Institute for Research on Evolution and Biodiversity)

12/02/13

14:00, Mohrenstr. 39, 10117 Berlin, Germany

Weierstrass Institute for Applied Analysis and Stochastics (WIAS)

Impact cratering on planetary surfaces is one of the most important geological processes in the solar system. The cratered landscapes such as on the Moon, Mars or Mercury testify to the importance of collision events during the evolution of planets. Although remnants of meteorite impacts are rare on Earth it is generally accepted that impact events played an important role in the evolution of the biosphere. On the other hand impacts pose a threat to life on earth. 65 Mio years ago the dinosaurs were wiped out by the impact of a 10 km diameter asteroid striking the Earth at approx. 20 km/s. A quantitative understanding of impact processes can be obtained by the analysis of remnants of impacts from the geological record, by analogue experiments, and numerical modelling. The latter is the main topic of this presentation. Numerical simulations of meteorite impacts require a special type of computer codes, so-called “hydroxides”. A hydrocode may be loosely defined as a code designed to solve large deformation, finite strain transient problems that occur on a short time scale. While material strength is neglected in Eulerian codes used for gas dynamics, it is a key component of hydrocodes. In contrast to structural analysis codes, the energy equation is integrated in time, and the deviatoric and pressure terms in the stress tensor are usually modelled separately. The solution is advanced in time using an explicit integration scheme because stress waves and shocks are an important part of the solution, and they must be resolved accurately in both space and time. We will describe modelling approaches to investigate hypervelocity impact processes and shock wave propagation on different scale ranging from millimetres to thousands of kilometres. Besides an efficient parallelized numerical solution of partial differential equations by finite volume technique on Eulerian grids the parameterisation of material properties poses the biggest challenge in the simulation of impact processes. Material modelling in terms thermodynamic behaviour and mechanical response of large, rapid deformation is key for realistic description of the processes.

  • Contact

IMU UNESCO ICIAM ICSU